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Natural disturbances

- Integral part of forest ecosystems

- Strongly influence the forest structure, composition and

function

- Influence the forest spatial and temporal patterns

Seidl et al. 2014. Nature. 1



Example: Forest disturbance caused by 

Ips typographus L.

 Biological agents account for over 60% of 

all calamities in European forest 

ecosystems

 Large-scale forest disturbances

 Mostly by Ips typographus L. in 

conifeorus and mixed stands 

 Effects on:

 growth forms

 wood production (living biomass)

 landscape aesthetics
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all calamities in European forest 

ecosystems

 Large-scale forest disturbances

 Mostly by Ips typographus L. in 

conifeorus and mixed stands 

 Effects on:

 growth forms

 wood production (living biomass)

 landscape aesthetics

Multitemporal and time series of optical 

imagery can help to assess the trajectories in 

space and time

Volume loss…
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Many ways to die…

Photos by S.Thorn
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…a real challenge for optical remote sensing

Latifi, H et al. 2014. Env. Monit. Asses. 186: 

441-4564



How to separate the damage classes?

I. Spatial separation  damage types (common classes)

I. Green-attacked

II. Red- attacked

III. Grey-attacked
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How to separate the damage classes?

I. Spatial separation  damage types (common classes)

I. Green-attacked

II. Red- attacked

III. Grey-attacked

Traditional optical solution includes e.g. using vegetation indices

www.exelisvis.com5



How to separate the damage classes?

Groups of Vis:

I. Ratio and Normalized Difference Indices (RNDI)

• E.g. NDVI or Simple Ratio (SR)

II. RNDI which incorporate correction factors 

• E.g. SAVI

III. Derivative indices (narrow band)

• E.g. Red edge position techniques

IV. Indices which calculate areas (integral-based)

• E.g. Triangular VI (TVI)
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• E.g. Triangular VI (TVI)

V.  Our approach: calculating the angles within a spectral triangle, instead or its

area

Fassnacht, F.E, Latifi, H. et al. 2012. Int. J. Appl. Earth 

Obs. Geoinf. 19: 308-3216



Approach within the BFNP

- 27417 Indices fom all possible band combinations of 39 

narrow band HyMap-channels in the VIS–NIR spectral 

range(0.455–0.986 µm)

- Genethic Algorithm for feature selection

- 6 response classes including damage and non-damage

stages, drawn form aerial orthophotos

Fassnacht, F.E, Latifi, H. et al. 2012. Int. J. Appl. Earth 

Obs. Geoinf. 19: 308-3217



- 27417 Indices representing the inner angles of 9139 

triangles by all possible band combinations of 39 

narrow band HyMap-channels in the VIS–NIR spectral 

range(0.455–0.986 µm)

- Genethic Algorithm for feature selection

- 6 response classes including damage and non-damage

stages, drawn form aerial orthophotos
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Obs. Geoinf. 19: 308-321

Blue: heavy damage

Yellow: medium damage

2009 2010
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narrow band HyMap-channels in the VIS–NIR spectral 

range(0.455–0.986 µm)

- Genethic Algorithm for feature selection

- 6 response classes including damage and non-damage

stages, drawn form aerial orthophotos

Approach within the BFNP

Fassnacht, F.E, Latifi, H. et al. 2012. Int. J. Appl. Earth 

Obs. Geoinf. 19: 308-321

Blue: heavy damage

Yellow: medium damage

2009 2010

Green-attacked

class

Other classes:

- Healthy deciduous

- Healthy coniferous

- Bare soil
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Results of GA
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Visual inspection of SVM results

Fassnacht, F.E, Latifi, H. et al. 2012. Int. J. Appl. Earth 

Obs. Geoinf. 19: 308-321

- Overestimation by classifying

„green attacked“ class

- “medium” and “high” damage 

classes were not completely 

separable 

- No field data available  green 

damage separation infeasible 
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Visual inspection of SVM results

Fassnacht, F.E, Latifi, H. et al. 2012. Int. J. Appl. Earth 

Obs. Geoinf. 19: 308-321

- Overestimation by classifying

„green damage“ class

- “medium” and “high” damage 

classes were not completely 

separable 

- No field data available  green 

damage separation infeasible 

Is there any way to map the early stages of tree mortality?
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Let‘s change the perspective…

Does this framework help?

- Multispectral, Multitemporal data  freely available

- Area-based scale  compromise the details

- Terminology: let‘s rename the classes to approximate the

terms

- High-density sampling from aerial imagery

Latifi, H. et al. 2014. Env. Monit. Asses. 186: 

441-45610



Let‘s change the perspective…

Does this framework help?

- Multispectral, Multitemporal data (2000-2011)  freely

available

- Area-based scale  compromise the details

- Terminology: let‘s rename the classes to approximate the

terms

- High-density sampling from aerial imagery
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Latifi, H. et al. 2014. Env. Monit. Asses. 186: 

441-456

- Take-Home messages:

- visually-identifiable infested patches can be accurately

classified

- Medium- and green stages (i.e. current year-1 and current

year-2) are mostly comissioned or omissioned

- Non-attacked class may contain green-attack

- Decessive factors in classification:

- Quality of reference data

- Size of infested patches

- Spatial resolution of imagery

12



Latifi, H. et al. 2014. Env. Monit. Asses. 186: 

441-456

- Take-Home messages:

- visually-identifiable infested patches can be accurately

classified

- Medium- and green stages (i.e. current year-1 and current

year-2) are mostly comissioned or omissioned

- Non-attacked class may contain green-attack

- Decessive factors in classification:

- Quality of reference data

- Size of infested patches

- Spatial resolution of imagery

Do further refinements (topographic info., object scale) improve the results?

13



High-end object-base framework

- 11-years of Landsat and SPOT data (one scene per year)

- Full object-based paradigm

- Testing:

- Object size

- Object aggregation

- Pan-sharpening imagery

- LiDAR DTM for deriving topographical metrics

- Texture metrics

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-78514
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Object-based set-up
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Object-based set-up

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-785

- Scale level (necessary for good delineation of the 

boundaries of features)

- = 50 for Landsat scenes

- = 70 for SPOT scenes

- = 50 for pan-sharpened images (2001, 2002, 2005 

and 2011)

- a higher scale value = higher variability within each object

= larger objects
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- Scale level (necessary for good delineation of the 

boundaries of features)

- = 50 for Landsat scenes

- = 70 for SPOT scenes

- = 50 for pan-sharpened images (2001, 2002, 2005 

and 2011)

- a higher scale value = higher variability within each object

= larger objects

- Object aggregation (merging adjacent objects) 

representing over- and under-segmentation

- 0, 25, 50 and 75%
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Object-based set-up

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-78516



- Object metrics

- Area

- Compactness

- Roundness

- Form factor

- No. of holes

- Mean and STDV

- Texture (3×3 kernel)

- Mean/STDV, Mean/STDV of texture from DTM

Object-based set-up

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-78516



Results

I- Predictor Importance
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Landsat time 

series

SPOT time 

series
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Results

II- performance
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Geography. 38(6): 755-785

The pan-sharpened scenes achieved

the highest OA

No trend observed by increasing the

segment merge level
OA%

Kappa%

Two of four pan-sharpened scenes

achieved the highest Kappa%
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Results

III- class-specific performances
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Results

III- class-specific performances

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-785

Summary:

- Deadwood and intact stands

- classified nearly perfect (PA and OA > 95%)

- UAs slightly lower than PAs  Marginal commission error

- Current year

- showed highly variant PA trend

- UA rates were, however, mostly consistent

- Current year -1

- No systematic improvement by the use of pan-sharpened data

- The UA and PA values hardly exceeded 90%

- Generally increased PAs (i.e. reduced omission errors) by

increasing the segment merge level

- Current year -2

- Nearly same observations as in case of „current year-1“ class

19



Results

IV- Probability surfaces for correct

classification
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Reduction of classificaiton uncertainty by using pan-sharped data

Marginally-increased uncertainty by using pan-sharped data
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Results

IV- Probability surfaces for correct

classification

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-785

Reduction of classificaiton uncertainty by using pan-sharped data

Marginal increased uncertainty by using pan-sharped data

The classes containing more dispersed, small segments are

more subject to misclassification
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Conclusions

Latifi, H. et al. 2014. Progress in Physical

Geography. 38(6): 755-785

• Medium resolution EO data could be leveraged to classify tree

mortality, provided that:

• The image Acquisition dates lie near to the reference data

collection

• An object based paradigm is applied

• The infested patches conform the spatial resolution of the

imagery

• The right classifier is employed

• The classes are realistically defined

• Terrain information is there  DTM or DSM

• An in-depth assessment of uncertainty is on-board !
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Conclusions
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Conclusions

Limitations

- The lack of narrow-band informaiton on Rededge and SWIR 

domains

- Suggestions: RapidEye or Sentinel II data (yet in shorter

time spans)
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Conclusions

Limitations

- The lack of narrow-band informaiton on Rededge and SWIR 

domains

- Suggestions: RapidEye or Sentinel II data (yet in shorter

time spans)

- Heterogeneity of object forms, sizes and texture

- Segment merging level and pan-sharpening are still of 

uncertain status for their contribution to mapping quality

Take-Home messages

- Early detection of tree mortality by mid-res optical data still is

(and further remain) a challenge

- Coupling the inherently-uncetain reference (in whatsoever form) 

and satellite-based EO data adds to the complexity
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Final remark: a phenological approach
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Final remark: a phenological approach
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Prerequisite: a reasonable phenological curve!



MODIS curve

Infested

Non-infested

DOY
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RapidEye Curve
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How does spatial-temporal data fusion work? 

MR: MODIS

HR: RapidEye

STARFM (Gao et al., 2006.  IEEE 

Trans.Geosci..Remote Sens.

MR-Scene 
T1

MR-Scene 
T0

HR-Scene
T1 

Datafusion 

synthetic
HR-Scene 

T0

Local Part 
Gobal Part
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Fusion results

Date R² RMSE MAE

2011.04.19 0.54 0.13 0.11

2011.07.12 0.53 0.13 0.11

2011.10.22 0.53 0.13 0.11

22.10.201112.07.201119.04.2011



Fused curve
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infested

Fused curve



infested

Fused curve

Not infested
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infested

Fused curve

Not infested
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infested

Fused curve

Not infested

Promissing results

Further work in process

Stay tuned
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Thank you !
Hooman.latifi@uni-wuerzburg.de
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