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Frequency of studies over time
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Descriptive statistics compiled from 116 selected studies focusing on tree species
mapping
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Number of species per sensor
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Hyperspectral data




Hyperspectral data
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(a) Distribution of reflectance at 4 m
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Spectral resolution
and range
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Do we need to cover the full VIS-SWIR region?
How narrow should the bands be?

How to deal with spectral resolution in an
operational approach?




Importance of spectral regions
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Fassnacht, F. E. et al. (2014): Comparison of Feature Reduction Algorithms for Classifying Tree Species With Hyperspectral Data on Three Central
European Test Sites. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (J-STARS) 7(6), pp. 2547-2561.
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Do we need to cover the full VIS-SWIR region?
Based on the studies so far: Yes!

But: some regions are more important
than others

=>» optimize processing speed?

12
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How narrow should the bands be?

Question is connected to processing
speed (hnumber of predictors)

Radiometric noise vs. ability to capture
subtle absorption features

Hardly any systematic investigation
available so far
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Results for SAM classifier applied to noise-reduced image (MNF)

Pena, M.A,, Cruz, P. & Roig, M. (2014). The effect of spectral and spatial degradation of hyperspectral
imagery for the Sclerophyll tree species classification. Int. J. of Rem. Sens., 34(20), 7113-7130.
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How narrow should the bands be?

“Gut feeling / hypothesis”:

A sensor with 100-150 narrow bands
(VIS-SWIR) should do the job

Having very narrow 400 bands won’t add
a lot of useful information in a
classification problem (co-linearity)

15
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How to deal with spectral resolution in an
operational approach?

Experiences from a case study conducted over
three test sites in Germany

16



Characteristics Site 1 (Demmin) Site 2 (Karlsruhe) Site 3 (Merzalben)
Bio- General North of Germany, Relatively warm climate Typical low mountain
geograph shows properties of a due to the influence of the range; relative humid and
ical riparian forest; Upper-Rhine; more cool climate; mountainous
flat terrain continental than typical terrain
German conditions; flat
terrain
Dominant Black Alder (Alnus, Scots Pine ( Pinus sylvestris), European Beech,
tree species  glutinosa); Willow | European Beech Sessile Oak, Pedunculate
(Saliz caprea), Birch | Sessile Oak (Quercus Oak, Scots Pine
(Betula pendula), Ash petreae), Pedunculate Norway Spruce,
(Frazinus excelsior), Oak (Quercus robur), Douglas Fir, Larch
European Beech (Fagus , Douglas Fir ( Pseudo- (small oceurrences)
sylvatica), Norway tsuga menziesit), Norway,
Spruce (Picea Abies Spruce, Larch (Lariz sp.)
(L.) Karst)
Hyvper- Sensor; AISA Eagle & Hawk; HyMap; HyMap;
spectral (spectral (4002450 nm); (450-2480 nm); (450—2480 nm);
dataset range); 29/06/2011 20/08 /2010 05/08 /2009
date (Cocks et al. (43))
Pixel size 3m 4m 5 m
Processing Destriped and Atmospherically and Atmospherically and
level atmospherically and topographically corrected topographically corrected

geographically corrected
by the GFZ using
ATCORA4 software

by DLR using ATCOR4
and ORTHO software

by DLR using ATCOR 4
and ORTHO software




Varying factor

Fixed factor

-

Classification with all samples

1

Test sites Demmin, Karlsruhe,
Merzalben

Y

Extraction of spectral values
based on tree species samples

g o

REFL CONTREM SAGO

Y

Feature Selection (Genetic
Algorithm, SVM wrapper,
SGPLS)

v

Best 30 bands

"Build subsets of best 5, 10, 15, |
20, 25, 30 bands

Classification (Support vector
machines, Random forest)

Parameter tuning (iterative
bootstrap procedure)

v

Optimized SVM parameters

- — >

Iterative bootstrap classification
with changing training and
validation samples
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PLS feature SVM wrapper Genetic Algorithm Reference Reference

selection all bands MNF
Demmin
Input dataset REFL CONTREM CONTREM MNF
Classifier SVM SVM SVM SVM SVM
Nr. of band€_20 15 20 > 125
Min. 0.650 0.700 0.723 0.729 0.848
Median 0.729 0.802 0.708
Max. 0.807 0.891 0.875 0.862 0.923
Karlsruhe
Input dataset SAGO CONTREM SAGO MNF
Classifier SVM SVM SVM SVM SVM
Nr. of band€_20 20 20 125
Min. 0.710 0725 0.726 0.680 0.924
Median 0.806 0.817 0.783
Max. 0.889 0.886 0.916 0.875 1.0
Merzalben
Input dataset CONTREM SAGO SAGO MNF
Classifier RF SVM SVM SVM RF
Nr. of bandg”_ 25 15 5 125
Min. 0.365 U 0.396 0.375 0.507
Median 0.513 @ 0.528 0.510 @
Max. 0.629 0.675 678 0.623 0.724

19
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How to deal with spectral resolution in an
operational approach?

All bands =» MNF (feature extraction) =»
Classification

By far best approach on all three test sites

Reduced set of predictors but almost all
information is preserved

20
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Scale
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What is the optimal pixel size for classifying
tree species?

Was is the optimal spatial unit to obtain species
information?

22
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What is the optimal pixel size for classifying tree
species?

Spectral variability

I

Pixel size

23
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What is the optimal pixel size for classifying tree
species?

Experiences from case studies (l)

Num. of

Sensor Classifier OA (%) K
Features
SVM 160 92.6 -
52 92.8 0.873
‘ . ‘ 160 89.7
Hyspex VNIR 1600 RF 5 90,1 0.823
160 - -
GML 52 87.0 AR
130 81.7 0.680
M
SV 42 80.9 w
. 130 75.9 0.571
Hys SWIR 32 :
yspex SWIR 3201 RF 42 770 0.590
130 - -
GML 673 :
SVM 230 gfg 0.867
Eyspcx VNIR 1600 o 290 379 0.785
Hyspex SWIR 320i 64 825 0687
GML 290 - -
’ 64 83.5 0.703

04m
Pixel
Size

OA (%) K
78.0 &g..gg;)
773

75.7 0.564
73.6 0.523
63.3 0.341
65.4 0.377
65.0 .

65.4 0.390
56.4 o293
77.0

75.5
74.8

0.589

0.555

71.5

0.497

1.5m
Pixel
Size

Dalponte et al. (2013). Tree Species
Classification in Boreal Forests With
Hyperspectral Data. IEEE Trans. On GeoSc.
And Rem. Sens., 51(5), 2632-2645.
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What is the optimal pixel size for classifying tree
species?

Experiences from case studies (ll)
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What is the optimal pixel size for classifying tree
species?

Experiences from case studies (ll1)
(a)
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Fig. 6. Behaviorlof (a) OA and (b) kappa against the spatial resolution for all predictor layers and classifiers.

Ghosh, A., Fassnacht, F. E. et al. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and
sensor across three spatial scales. Int. J. of Appl. Earth Obs. and Geoinf., 26, 49—63.
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Legend: Reference Map

Legend: Classified Maps
Reference Map

Tree species maps obtained with MNF (and MNF + H) as predictor layer.

Ghosh, A., Fassnacht, F. E. et al. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and
sensor across three spatial scales. Int. J. of Appl. Earth Obs. and Geoinf., 26, 49—63. 27
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What is the optimal pixel size for classifying tree
species?

Case studies suggest:

Either possibly small pixels (< 0.5 m)

Or: pixels close to the size of an individual
crown

BUT: So far the spatial unit was a pixel!

28
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Was is the optimal spatial unit to obtain species
information?

Three obvious approaches:

(1) Pixel
(1) Single-tree objects
(111) Stands or other operational unit

29
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Was is the optimal spatial unit to obtain species
information?

Results from the literature are mixed:

@rka et al. 2013: Single-tree approach better than area-based approach

Clark et al. 2005: Leaf Scale is better than crown level, crown level is better than pixel-
level

Clark et al. 2012: Pixel spectra are better than crown-mean spectra, pixel-majority
voting is better than pixel spectra

Hans Ole @rka, Michele Dalponte, Terje Gobakken, Erik Naesset & Liviu Theodor Ene (2013) Characterizing forest species composition using multiple remote sensing data
sources and inventory approaches, Scandinavian Journal of Forest Research, 2013, 28:7, 677-688.

Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rainforest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375—-398.

Clark, M.L., Roberts, D.A. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier, Remote Sensing, 2012,
4,1820-1855
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Was is the optimal spatial unit to obtain species
information?

Advantages of object-based approaches (single tree and stand-
level) in case accurate objects can be obtained:

- Meaningful units (practitioners work with it)
- Combination of LiDAR and Hyperspectral becomes more powerful:

= normalization of spectra (sunlit parts of the crowns)

= Majority voting approaches

* single-tree based geometric information (crown-base height, canopy transects,
crown volume, ...)

= Density information from LiDAR + spectral information from satellites

31
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Was is the optimal spatial unit to obtain species
information?

Challenges of object-based approaches (single tree and stand-
level):

- The quality of the results largely depends on the delineation success

- Classifications on stand-level-objects have to consider that differing forest densities
may lead to very distinct reflectance signals for the identical species composition

32
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Some other points...

33
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Do we need more definitions?

Tree species classification/discrimination
(HAS to be on single-tree level?)

Tree species mapping
(Quite a notable number of paper didn’t present maps!)

Forest composition classification

(HAS to be object-based? What do we actually need? Mixture
information? Dominant species?)

Forest composition mapping
(What to put in the map?)

34
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One LiDAR flight is enough...

Do we need regular LiDAR/ Hyperspectral flights?
New options with VHR satellite data

Height (photogrammetry) Tree species Forest density
=> Proxy for DBH —> Species specific => Proxy for number of
Biomass allometry

stems / single tree delin.

BN
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One LiDAR flight is enough...

Do we need LiDAR/ Hyperspectral flights?
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Tree Species classification results with WV-2 data (SVM)
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Conclusions

Fassnhac ti
Modzelaéﬁfed/u glﬁ ﬁS
Straub, C., Ghosh, A. (2016): Reviewof studies
on tree species classification from remotely

sensed data. Remote Sensing of Environment
186, pp. 64-87.
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Conclusions

Complete coverage of the VIS-SWIR region is desirable

Operational perspective: Processing speed could be optimized by
reducing the number of bands (still not fully clear how).

Questions related to scale have rarely been adressed

Optimal scale still unclear; single-tree-level seems promising,
BUT: delineation quality, processing speed, ...

38
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